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Abstract Technical term translations are important for cross-lingual information retrieval. In

many languages, new technical terms have a common origin rendered with different spelling

of the underlying sounds, also known as cross-lingual spelling variants (CLSV).

To find the best CLSV in a text database index, we contribute a formulation of the problem

in a probabilistic framework, and implement this with an instance of the general edit distance

using weighted finite-state transducers. Some training data is required when estimating the

costs for the general edit distance. We demonstrate that after some basic training our new

multilingual model is robust and requires little or no adaptation for covering additional

languages, as the model takes advantage of language independent transliteration patterns.

We train the model with medical terms in seven languages and test it with terms from

varied domains in six languages. Two test languages are not in the training data. Against a

large text database index, we achieve 64–78 % precision at the point of 100% recall. This is

a relative improvement of 22% on the simple edit distance.

Keywords Term translations . Cross-lingual information retrieval . Systematic spelling

variants . General edit distance

1. Introduction

Finding term translations as cross-lingual spelling variants on the fly is an important problem

for cross-lingual information retrieval (CLIR). CLIR is typically approached by automatically

translating a query into the target language. For an overview of the approaches to cross-lingual

information retrieval, see (Oard and Diekema, 1998). When automatically translating the

query, specialized terminology is often missing from the translation dictionary. The analysis

of query properties in (Pirkola and Järvelin, 2001) shows that proper names and technical

terms often are prime keys in queries, and if not properly translated or transliterated, query
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performance may deteriorate significantly. As proper names often need no translation in

languages using the same writing system, a trivial solution is to include the untranslatable

keys as such into the target language query. However, technical terms often have common

roots, which allows for a more advanced solution using approximate string matching1 to find

the target words, most similar to the source keys, in the index of the target language text

database (Pirkola et al., 2001).

In European languages, the loan words are often borrowed with minor, but language

specific, modifications of the spelling of a common Greek or Latin root. This allows for

initial testing of some straight forward approximate string matching methods. A comparison

of methods applied to cross-lingual spelling variants in CLIR for a number of European

languages is provided in (Keskustalo et al., 2003). They compare exact match, simple edit

distance, longest common subsequence, digrams, trigrams, tetragrams, as well as skipgrams,

i.e., digrams with gaps. Skipgrams perform best in their comparison with a relative improve-

ment of 7.5% on the average on the simple edit distance baseline. They also show that among

the baselines, the simple edit distance baseline is in general the hardest baseline to beat.

They use no explicit n-gram transformation information. Such transformations are used in

(Pirkola et al., 2003), where they are based on digrams and trigrams. Trigrams are better than

digrams, but they make no comparison to the edit distance baseline. However, in both of the

previous studies on European languages, the distance measures based on n-grams use a bag

of n-grams ignoring their sequential order.

Between languages with different writing systems, foreign words are often borrowed based

on phonetic rather than orthographic transliterations suggesting a phoneme-based rather than

a grapheme-based approach. In (Knight and Graehl, 1998), a phoneme-based generative

model is introduced which transliterates words from Japanese to English using weighted

finite-state transducers. In (Qu et al., 2003), this approach is successfully evaluated in an

information retrieval context. This model uses context-free transliterations, which produces

heavily overgenerating systems. Context-sensitivity requires more training data, but training

data is less readily available for phoneme-based approaches, which lately have been rivaled

by grapheme-based approaches, e.g., to Arabic (Al-Onaizan and Knight, 2002), Japanese

(Ohtake et al., 2004; Bilac and Tanaka, 2004), and Chinese (Zhang et al., 2004). Until now,

such models have included only one language pair.

Our first contribution is to present a formulation of finding cross-lingual spelling variants
in a probabilistic framework. The second contribution is to reformulate this as an instance
of the general edit distance and to show how this is efficiently implemented with weighted
finite-state transducers using context-sensitive transliterations. The costs for the general

edit distance are learned from a training sample of term pairs. The third contribution is to

demonstrate that a distance measure, which explicitly accounts for the sequential order of the
n-grams, significantly outperforms models based on unordered bags of n-grams. The final

contribution of this article is to demonstrate that our model needs little or no adaptation for

covering new language pairs and that the model is robust, i.e., adding a new language does

not adversely affect the performance of the model for the already trained languages.

1 Approximate string matching is also known as string matching allowing errors. An error model defines how
different two strings are. The idea is to make the difference small when one of the strings is likely to be a
variant of the other. One of the best-studied cases is the edit distance which allows deletions, insertions, and
replacements of simple letters in both strings. If the different operations have different costs or the costs depend
on the letters involved, we speak of the general edit distance. If all operations cost 1, we speak of simple edit
distance or just edit distance. For a survey methods for approximate string matching, see (Navarro, 2001).
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In our first experiment, we train and test a multilingual model with terms from the

medical domain. Against an index of a large English newspaper database, we achieve 80–

91% precision at the point of 100% recall for a set of medical terms in Danish, Dutch,

French, German, Italian, Portuguese and Spanish. On the average, this is a relative im-

provement of 26% on the simple edit distance baseline. In our second experiment, we use

the medical terms as training data and test with a set of terms from varied domains. We

achieve 64–78% precision at the point of 100% recall in French, German, Italian, Span-

ish, Swedish and Finnish. On the average, this is a relative improvement of 22% on the

simple edit distance baseline. For Swedish, there is no training data, and for Finnish, we

need only a small amount of training data for adapting the multilingual model, which

demonstrates that the model has captured essential language independent transliteration

patterns.

The rest of this article is organized as follows. Section 2 Methodology introduces the prob-

abilistic framework and outlines its implementation with weighted finite-state transducers.

Section 3 Data Sets presents the training, test and adaptation data collections as well as the

baselines. In Section 4 Experiments, we present the experiments and evaluate the results and

their importance. In Section 5 Discussion, we discuss the linguistic motivations for the model

and some related work.

2. Methodology

First we describe a method for finding the best cross-lingual spelling variants (CLSV) for

a given search key with an unknown translation and present it in terms of a probabilistic

framework. We then outline how the framework can be implemented with a cascade of

weighted finite-state transducers.

2.1. Probabilistic framework

Assume that we have a word in a foreign language. We call this the source word S. The word

looks familiar and we want to know the possible meanings of this word in a language known

to us, but we do not have a translation dictionary, only a word list of the words in the known

language. We take the word and compare it to all the words in the word list L in order to

determine which word is most similar to the unknown word. We call the most similar word

the target word T . In the beginning we can only compare how many letters are similar or

different, but having done so a few times, we start to learn the regularities involved where

some letters are likely to be inserted, deleted or replaced with others. We also observe that

the likelihood for insertion, deletion and replacement for each letter is different in different

contexts.

A model for this procedure is to find, in the target word list L , the target word T which

is most likely to convey the meaning of the source word S by accounting for all the sounds

encoded by the source word letter sequence. To find the most likely target word for any given

source word, we need to maximize the probability P(T | S), i.e.,

arg max
T ∈L

P(T | S) . (1)

In order to automate this procedure we take a sample of source words, whose target words

we have already determined. We then align the source words and their target words using the
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Table 1 Minimum edit distance
alignment of the target word
capacity in English and source
words capacidad in Spanish at
cost 3 and Kapazität in German at
cost 4, when ε is the empty string

Src Trgt Src Trgt

c c K ↔ c (rep)

a a a a

p p p p

a a a a

c c z ↔ c (rep)

i i i i

d ↔ t (rep) t t

a ↔ y (rep) ä ↔ y (rep)

d ↔ ε (del) t ↔ ε (del)

minimum simple edit distance assuming that most of the corresponding letters of the alphabets

of the two languages represent roughly the same sounds. For the simple edit distance, the

cost of editing the original string with a replacement, insertion or deletion is one, whereas

keeping the same letter has zero cost. In Table 1, we see an example of two words aligned

with the minimum simple edit distance.

From the set of source words aligned with their target words, we derive the frequency

of each edit operation in context. We take into account a context of at most four letters,

cf. Section 5.1 Cross-lingual Spelling Changes, in the source word S including the letter si

aligned with the letter ti in the target word T . Fixing the alignment of the target and source

word letters requires that we also consider the possibility that a target word letter is aligned

with no letter at all, i.e., the empty string, in the source word and vice versa. We need to

consider at most max(|T |, |S|) positions in the target word T , |S| − |T | of which are empty

strings if |S| > |T |. If we fix the context of the letter si , e.g., to be one letter to the left and

two to the right, we need to pad each word with a placeholder at the beginning and two at

the end of the word extending the alphabet with a padding letter. We use # as a padding

letter.

We denote the context si−1si si+1si+2 in the source word with Si4, where si occurs after

si−1 and before si+1 and si+2 in the source word, and si−1, si+1 and si+2 can be any letters

of the source language alphabet. The expression ti |Si4 can be seen as a transformation of si

into ti in the context Si4. Here si and ti can be any letter of the source and target language

alphabet, respectively, as well as the empty string ε. In the Equation

P(T | S) =
∏

i=1..max(|T |,|S|)
P(ti | Si4), (2)

the probability of the transformation ti |Si4 is estimated with the count for the transformation

divided by the count for the context Si4, i.e., the probability P(ti |Si4) ∼= cnt(ti |Si4)/cnt(Si4).

This defines a probability distribution for the transformations of si into ti in the source word

context Si4.

If a context occurs too seldom, e.g., less than M times, cf. Section 4.1 Experiments
on Training Data, the reliability of the estimate for the probability distribution is low.

We use an offline back-off model for smoothing the probability P(ti | Si4). We define

the contexts Si3 = si−1si si+1, Si2 = si−1si and Si1 = si . The back-off model is defined

as
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P(ti | Si4) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cnt(ti | Si4)/cnt(Si4) if cnt(Si4) ≥ M,

cnt(ti | Si3)/cnt(Si3) if cnt(Si4) < M ∧ cnt(Si3) ≥ M,

cnt(ti | Si2)/cnt(Si2) if cnt(Si3) < M ∧ cnt(Si2) ≥ M,

cnt(ti | Si1)/cnt(Si1) if cnt(Si2) < M.

(3)

We use Laplace’s law for successions for discounting unseen transformations with the

additional assumption that a letter is most likely to remain untransformed in any given

context. Let |A| be the size of the target language alphabet. For each j , when j = 1 . . . 4, the

transformation count cnt(ti | Si j ) is increased by 1/2 if si = ti and by 1/2 ∗ (|A| − 1)−1 if

si 	= ti , and the context count cnt(Si j ) is increased by 1. For unseen contexts, this gives 50%2

of the probability mass to keeping a letter untransformed, and the rest is evenly distributed

among the transformations to other letters or the empty string, thus roughly modeling the

simple edit distance.

The target word T with the highest probability in the target word list L is

arg max
T ∈L

P(T | S) = arg max
T ∈L

∏
i=1..max(|T |,|S|)

P(ti | Si4) . (4)

2.2. Weighted finite-state transducers

Finding the CLSVs or target words with the highest probabilities can be efficiently imple-

mented with a cascade of finite-state transducers3 composed into a Translation transducer.

First the source word S is expanded into an automaton of tetragrams using a transducer

called Tetrify:

b → (aεbc)∗abcd/a c d, (5)

i.e., b is replaced with the regular expression of tetragrams (aεbc)∗abcd, when a precedes b
and b is followed by c and d in the source word, where a, b, c and d represent any letter of the

source language alphabet. The tetragrams are letters of the alphabet in the new automaton.

The tetragrams with the ε symbol in (5) are used for introducing the positions of empty

strings in the source word that may be aligned with letters in the target word.

If a tetragram is too infrequent, i.e., it occurs less than M times, the back-off model from

(3) is implemented by replacing the tetragram with a trigram, digram or unigram representing

a more general and sufficiently frequent context. In a transducer called Backoff, each n-gram

symbolizes a source word letter context:

axcd →

⎧⎪⎪⎪⎨⎪⎪⎪⎩
axcd if cnt(axcd) ≥ M,

axc if cnt(axcd) < M ∧ cnt(axc) ≥ M,

ax if cnt(axc) < M ∧ cnt(ax) ≥ M,

x if cnt(ax) < M,

(6)

where x may be any letter of the source language alphabet as well as the empty string ε.

2 The 50% probability assigned to keeping a letter unchanged in an unseen context is based on a conservative
intuition for European languages. The probability could be higher, but even a small amount of training material,
i.e., seen contexts, will overshadow this default value.
3 Publicly available toolkits for weighted finite-state transducers have been implemented by, e.g., (Mohri,
1997; Mohri et al., 2003) and (van Noord, 2002).
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A Weight transducer represents the probability distribution of the target language letters

for each source letter context. The transducer is implemented in the tropical semi-ring giving

each transduction a log-probability weight:

axcd → y with − log(P(y | axcd)),

axc → y with − log(P(y | axc)),

ax → y with − log(P(y | ax)),

x → y with − log(P(y | x)),

(7)

where y is any letter of the target language alphabet as well as the empty string ε. The

target word list is compiled into an identity transducer called Targetindex. All the possible

target words T which correspond to a source word S are found by composing the cascade of

transducers into the Translation transducer:

Translation = S o Tetrify o Backoff o Weight o Targetindex . (8)

To extract the target words T , we make a projection of the Translation transducer on the

target word surface. The N -best target words of the projection are listed, i.e., the N target

words with the smallest total log-probability weights.4

The process is outlined in Table 2 for the transliteration of the German word Kapazität
into the English word capacity. The table shows all the alternatives of the fully trained model.

The transductions are unambiguous until the Weight transductions. The context-sensitivity

leaves fairly few options to be considered and only for azi is the correct alternative the second

best. For brevity, we did not include in the table that Tetrify introduces a placeholder context

allowing insertions between every letter of the source word: E.g., between the source word

letters K and a, there would be the placeholder context kεap corresponding in this case to an

empty string in the target word.

3. Data sets

First we describe the training, test and adaptation data collections. We then motivate our

choice of baseline for the task of finding CLSVs for words with unknown translations and

present a baseline for our method on the training and test data collections.

3.1. Training data

The problem of finding terms for unknown words crops up in many different areas with

quickly developing terminologies, e.g., medicine, economics, technology. As training data

for our model we chose technical medical terminology in seven different languages as source

words. We chose English as the target language. The terminology was extracted from the

web pages of the EU project Multilingual Glossary of Technical and Popular Medical Terms
in Nine European Languages by Stichele (1995). Only eight languages were available on the

web server: Danish, Dutch, English, French, German, Italian, Portuguese and Spanish. We

collected 1617 words which had at least one translation in all eight languages.

4 The general edit distance can be efficiently implemented in the tropical semi-ring, where finding the string
with the highest probability coincides with the single source shortest distance algorithms (Mohri, 2003).
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Table 2 Transliteration of
Kapazität in German to capacity
in English with the Translation
transducer. The empty string is
symbolized by ε. A smaller
weight means a higher probability

Matching entries

S Tetrify Backoff Weight in Targetindex

# ε#ka ε#ka #/0.00 #

K #kap #kap c/0.22 c

k/1.61

a kapa kap a/0.00 a

p apaz apa p/0.00 p

a pazi pa a/0.01 a

i/6.39

ε/6.39

z azit azi t/0.14

c/2.44 c

ε/3.39

z/5.00

s/5.00

i zitä zitä i/0.00 i

t ität ität t/0.05 t

e/3.64

n/3.64

ä tät# tät# y/0.08 y

s/3.66

e/3.66

t ät## ät## ε/0.08 ε

s/2.97

t/3.66

# t##ε t##ε #/0.00 #

# ##εε ##εε #/0.00 #

3.2. Test data

To be able to compare our test results, we used the test data created by Keskustalo et al.

(2003) at the University of Tampere. The test data consists of three parts: the target words,

the search keys, and the set of correct answers (relevance judgments). Their characteristics

are recapitulated below.

The target words consist of a list containing all words of an English full-text database

index of 84 000 documents (Los Angeles Times used in the CLEF 2000 experiments) (Peters,

2000). It contains around 189 000 unique word forms. The words are either in base form if

recognized by the morphological analyzer ENGTWOL (Voutilainen et al., 1995) used in

indexing, or in case of unrecognized word forms, the original words as such. All words are

written in monocase.

The 271 search keys are translations into six languages of terms selected from the English

database index. The terms did not occur in a standard translation dictionary. The terms

can be grouped into domains. The number of terms in English in each domain is indicated
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in parenthesis: medicine or biology (90), geographical place names (31), economics (55),

technology (36) and others (59). The terms were translated into Finnish, French, German,

Italian, Spanish and Swedish. For some terms, there are more than one translation resulting

in a slightly varying number of search keys for each test language.

For each translated term, its English equivalent was considered the correct answer, i.e.,

the relevant target word to be identified.

3.3. Adaptation data

Based on the 1617 English training data terms, we created adaptation data for Finnish by

consulting several online resources. The most significant resource was the online medical

language database Tohtori.fi – Lääkärikirja (Nienstedt, 2003). We found Finnish equivalents

for 1480 of the medical terms.

3.4. Baselines and significance tests

The ideal method for this task should always give the correct translation or transliteration

as the first choice. In this case the precision would be 100% at the level of 100% recall.

Occasionally, non-ideal methods will give x incorrect suggestions before the correct one. In

this case the precision is 1/(1 + x) at 100% recall. If the correct answer is not among the

candidates suggested by a method for a certain test word, the precision is 0% at 100% recall

for this test word. The overall performance of a method is the average precision at 100%

recall. Using the precision of each test word, we can calculate the average precision and the

standard deviation. We measure the significance of improvements in the performance with

the z-test, which compares two sample means to suggest whether both samples come from

the same population (Kanji, 1999).

In order to evaluate the performance of our method on the training data, we chose the edit

distance as a baseline. This is motivated by the research done by Keskustalo et al. (2003),

which shows that the edit distance is often the most difficult baseline to beat for this type of

task among a number of other baselines.

For the training data, the performance of the simple edit distance is shown in Table 3. The

table also shows the average edit distance and the percentage of exact matches. The standard

deviation of the baseline in each language is approximately 1.0%. The average baseline for all

the languages is 67.7 ± 0.4%. An exact match has simple edit distance zero. The percentage

Table 3 The edit distance
baseline, the average minimum
edit distance and the percentage
of exact matches for each
language in the training data

Edit Distance Average Exact

Language Baseline Edit Distance Matches

Danish 71.0 1.86 28.1

Dutch 67.2 1.80 17.8

French 67.9 1.64 19.4

German 73.2 1.84 25.0

Italian 62.7 2.37 4.5

Portuguese 59.7 2.29 10.0

Spanish 72.5 1.75 15.1

Average 67.7 1.94 17.1
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Table 4 The simple edit
distance, the best skipgram result
and the percentage of exact
matches for each language in the
test data

Edit distance Skipgram Exact

Language Baseline Precision Matches

French 72.2 75.5 40.8

German 60.8 65.7 17.6

Italian 53.2 57.2 12.8

Spanish 57.0 60.0 13.7

Finnish 45.9 49.9 1.8

Swedish 56.0 62.1 19.7

Average 57.5 61.7 17.7

of exact matching terms for each of the languages with regard to the English terminology is

fairly low, i.e., on the average 17.1% of the 1671 terms.

For the test data, the performance of the simple edit distance and the best skipgrams are

shown in Table 4. The table also shows the percentage of exact matches. The numbers in the

table are from Keskustalo et al. (2003). We grouped the table according to languages present

in the training data. The standard deviation of the baseline in each language is approximately

2.5%. The average simple edit distance baseline for all the languages is 57.5 ± 1.2%. The

percentage of exact matching terms for each language is on the average 17.7% of the 271

English terms.

The percentage of exact matches for French in the training data may seem relatively low

compared to that in the test data. This is due to the differing principles for compiling the data

collections. The EU project selected preferred or recommended term translations, whereas

(Keskustalo et al., 2003) selected those term translations that are CLSVs. The percentage of

exact matches for Finnish in the test data is very low due to the Finnish syllable structure,

which almost always requires additional characters in words and terminology borrowed from

other languages.

4. Experiments

We did initial experiments with the training data in order to tune the parameters and gain

reference values for the performance level improvements. We then applied the trained model

to the test data. Finally, we studied the performance of our model when adapting it to an

additional language.

4.1. Experiments on training data

In our experiments on the training data, we used part of the training data to train the general

edit distance model and the rest to evaluate how well the model was able to pick the correct

translation from the English database index. We used 10-fold cross-validation on the training

data, i.e., we estimated the parameters on 90% of the terminology and used 10% for testing.

Each time we used a different portion of the training data for training and testing purposes.

When training, we pooled the training data, i.e., we derived context and transformation

counts from all the languages, paired with English as the target language, cf. Section 5.2 Multi-
lingual Modeling. In an initial experiment, we determined that pooling the training data gives

a statistically significantly better performance than training separately for each individual
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Table 5 The average precision on the training data for all the languages using English
as the target language as well as the relative and absolute improvement

Average Standard Absolute Relative

Language Baseline Precision Deviation Improvement Improvement

Danish 71.0 86.5 ±0.8 15.5 21.8

Dutch 67.2 90.6 ±0.7 23.4 34.8

French 67.9 86.9 ±0.8 19.0 28.0

German 73.2 88.7 ±0.7 15.6 21.3

Italian 62.7 80.2 ±0.9 17.6 28.0

Portuguese 59.7 82.0 ±0.9 22.3 37.3

Spanish 72.5 82.9 ±0.9 10.4 14.3

Average 67.7 85.4 ±0.3 17.7 26.5

language pair. The initial experiments also showed that using a minimum context frequency

M = 4 from a range of 1 . . . 6 in the back-off model yielded the best transliteration results

on the training data.

The model is relatively fast. We achieved a performance average of approximately 0.58

seconds per source word for computing all possible transliterations in the target word index

containing approximately 189 000 word forms. We used an Intel Pentium 4 with 1.8 GHz

CPU and 1 GB of memory. The speed is crucially dependent on the context-sensitive trans-

formations allowing few and correct transformations in each context. Insertions are relatively

rare in most contexts, but the back-off model easily backs off to a broad range of context-free

insertions. Allowing the model to explore context-free insertions increases the time con-

sumption 8.5-fold, but adds only 1.0% to the average precision. We disallowed backing off

to context-free insertions. Further speed-up could have been achieved by generally pruning

low-probability transformations.

The overall result for all the languages was 85.4 ± 0.3% with our method. This is a relative

improvement of 26.5% on the simple edit distance baseline. The average precision as well

as the standard deviation for each language is shown in Table 5. The average precision is

compared to that of the baseline and the absolute and relative performance improvement is

calculated.

With English as the target language, the languages from the Germanic language family,

i.e., German, Dutch and Danish, perform in the range of 86–91%, whereas the languages

from the Romance language family, i.e., French, Italian, Portuguese and Spanish, perform

in the range of 80–87% on the training data. This is very highly significantly better than the

baselines with p < 0.0001.

4.2. Experiments on test data

For the experiments on the test data we used a model that was trained on all of the pooled

training data. The average precision as well as the standard deviation for each test language is

shown in Table 6. The average precision is compared to that of the baseline and the absolute

and relative performance improvement is calculated.

The languages that were present in the training data improved significantly as expected,

except French, which improved less than expected. There was no training data for Finnish
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Table 6 The test results for each of the languages on the test data without training or
adaptation data for Swedish and Finnish

Standard Absolute Relative

Language Baseline Precision Deviation Improvement Improvement

French 72.2 77.1 ±2.3 4.9 6.8

German 60.8 73.2 ±2.4 12.4 20.4

Italian 53.2 65.7 ±2.6 12.5 23.6

Spanish 57.0 65.3 ±2.6 8.3 14.6

Finnish 45.9 40.7 ±2.8 −5.2 -11.3

Swedish 56.0 73.5 ±2.5 17.5 31.2

and Swedish. Finnish from the Fenno-Ugric language family performed below the baseline.

Swedish, however, was in line with German from the same Germanic language family.

4.3. Experiments with adaptation data

We wanted to study the robustness of our model when adapting it to a new language. As the

results from the experiments on the test data suggested, no further adaptation was needed

when adding a language from a language family present in the training data, so we studied a

language from a new language family by adapting the model to Finnish from the Fenno-Ugric

language family.

We gradually added adaptation data for Finnish and observed the performance of the

model on the test data. We did 10 test runs with random permutations of the adaptation data.

The result is shown in Fig. 1. When adding approximately 19 randomly selected Finnish-

English term pairs to the training data, we reached the baseline. When adding approximately

37 randomly selected term pairs, we reached the skipgram performance. After approximately

150 term pairs no further statistically significant improvement could be observed with the

test data.

The final overall result for all the languages was 70.2 ± 1.0% when the model was fully

adapted to Finnish. This is very highly significantly better than the baseline and the skipgram

performance with p < 0.0001. The relative improvement of the average precision is 22.1% on

the simple edit distance baseline. The average precision as well as the standard deviation for

each language is shown in Table 7. The average precision is compared to that of the baseline

and the absolute and relative performance improvement is calculated.

As can be seen in Fig. 1 and by comparing the precision of the unadapted model with

the precision of the adapted model in Table 7, the performance of the other languages than

Finnish did not change in any significant way while we added the Finnish adaptation data to

the pool of training data. In Table 8, we see that 64–77% of the translations are found in the

top two positions.

4.4. Importance of the results

We have evaluated our method on terminology from several domains, and the prediction of

a 26% relative improvement of the average precision gained from the field of medical termi-

nology was confirmed as a 22% relative improvement on a test set composed of several do-

mains. The improvement over the simple edit distance and skipgram baselines is statistically
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Fig. 1 General edit distance (GED) performance on all the test data when adding Finnish adaptation data to
the model

Table 7 The test results for each of the languages in the test data before and after the model
is fully adapted to Finnish

Precision Precision Standard Absolute Relative

Language Baseline Before After Deviation Improvmnt Improvmnt

French 72.2 77.1 77.5 ±2.3 5.3 7.3

German 60.8 73.2 73.7 ±2.4 12.9 21.2

Italian 53.2 65.7 66.2 ±2.6 13.0 24.4

Spanish 57.0 65.3 65.0 ±2.6 8.0 14.0

Finnish 45.9 40.7 64.5 ±2.7 18.6 40.5

Swedish 56.0 73.5 74.1 ±2.4 18.1 32.3

Average 57.5 65.9 70.2 ±1.0 12.6 22.1

Table 8 The recall percentage in positions 1, 2, 3–5, 6–10, 11–, and infinity (= not
found) for each of the languages in the test data in the final model

Positions 1 2 3–5 6–10 >10 ∞ Total

French 71 (198) 6 (18) 3 (11) 1 ( 4) 5 (14) 11 (32) 100 (277)

German 67 (193) 7 (21) 2 ( 6) 1 ( 4) 5 (16) 15 (45) 100 (285)

Italian 59 (172) 7 (21) 3 (11) 3 ( 9) 4 (14) 21 (62) 100 (289)

Spanish 57 (161) 7 (22) 4 (12) 3 (11) 6 (17) 20 (57) 100 (280)

Finnish 56 (154) 9 (25) 5 (14) 1 ( 5) 5 (15) 21 (60) 100 (273)

Swedish 66 (183) 8 (24) 3 ( 9) 1 ( 3) 5 (16) 14 (39) 100 (274)
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significant with more than 99.99% confidence, which shows that observing the sequential

ordering of the n-grams is important.

The fact that no training data was needed for Swedish and that very little adaptation data

was actually needed for Finnish from a language family not present in the training data,

indicates that the model has captured the essentials of transliterating technical terminology

in a language independent way and even in a language-family independent way for languages

using the Latin script. The fact that the performance of the other languages did not significantly

change while adding Finnish adaptation data confirms that the model is robust with regard

to training.

When the recall in the first two positions, 64–77%, is compared to the average precisions,

64–78%, at 100% recall for the test languages, we can conclude that in practice we need only

consider the top two translation candidates and most often the first candidate is the one we

are looking for.

5. Discussion

In this section, we discuss the nature of cross-lingual spelling changes, especially with regard

to European languages. Then we discuss the context length and the pooling of training data

in the model. Finally, we study some related work and extensions to languages with other

writing systems.

5.1. Cross-lingual spelling changes

Most of the language independent similarity measures for finding cross-lingual spelling

variants studied in CLIR, e.g., in Keskustalo et al. (2003) and in Pirkola et al. (2003),

compare bags of n-grams. In natural language, the order of the n-grams is relevant especially

within words. One of the strong points of the general edit distance is the attempt to model

this ordering explicitly, e.g., the meaning of the word blockbuster is not particularly close

to the word bustblocker despite the fact that they are only separated by four digrams: tb, kb,

te, and ke. The words blockbuster and blockbusting are much more related even though

they are separated by five digrams: te, er , ti , in, and ng.

The order of the n-grams is usually preserved when words are borrowed into another

language, even if some sounds are rendered differently. In general, when we studied the

location of the sound and spelling changes for the translations of medical terminology in

European languages, we found that 60% of all the changes take place in the last three

letters of a word. The often very systematic nature of cross-lingual spelling variants is

reflected in the fact that the word roots remain fairly intact, but the suffixes encoding a

word class are different in different languages, e.g., -tet in Danish, -tät in German, -té in

French, -tà in Italian, and -ty in English. We used this as a motivation for extending the

shape of the n-gram contexts towards the end of the words in our general edit distance

model.

Swedish has similar ways to Danish for productively forming new nouns and adjectives

as the languages are closely related, whereas Finnish is a Fenno-Ugric language unrelated

to any of the languages in the training data. Finnish, however, imposes its differing sound

structure mainly on the suffixes of the technical terms. In the previous example, the corre-

sponding Swedish and Finnish suffixes would have been -tet and -teetti, respectively. These

were probably the main reasons for the good performance of Swedish and the low initial

performance of Finnish.
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As can be seen from the averages of the simple edit distances in the baselines for the

training data, the Italian and Portuguese terminologies are the most distant ones from the

English terminology. In Italian it would seem that the Latin-based terminology has in general

undergone the most orthographic changes, to reflect the changing pronunciation of the words,

in comparison to the other languages, where the roots of the loan words have retained more

of their classical Latinate spelling.

5.2. Multilingual modeling

The length of the n-gram context was limited by the amount of readily available training

data. Using 5-character contexts would have made most of these contexts fall back on the

4-character contexts in our back-off model due to lack of training data. On the other hand, the

amount of available training data for the language pairs we used was reasonable in comparison

to the amount of data available for many other language pairs. The applicability of the model

to other languages requires that the amount of training be kept to a minimum.

Initial experiments showed that pooling the training data gives a statistically significantly

better performance than training separately for each individual language. This is probably

due to the overwhelming majority of regularities present in the multilingual training data,

e.g., the English term adult with the phonologically regular corresponding medical terms in

French adulte, Danish adultus, Spanish and Portuguese adulto as well as Dutch adult.5 These

regularities compensate for irregularities in the German erwachsen and Italian emancipato.

The irregularities introduce random noise in the multilingual model, which is filtered out

with the frequency threshold.

The observed advantage of pooling the training data also partly explains the robustness

of the model when adapting it to new languages. The model is able to gain leverage from

regularities in all the training languages without being distracted by individual discrepancies.

The experiment with adaptation to Finnish shows that the rendering of the sounds in the roots

is not significantly different even in another language family. As soon as a small but sufficient

number of regular suffix transformations have been learned, the model is able to benefit from

the general sound transformations learned from other language pairs.6

5.3. Future work

Some methods try to deal with spelling errors and CLSVs at the same time. However, CLSVs

are fairly systematic, whereas spelling errors tend to be accidental. For a recent survey of

spelling correction methods and a new method specifically designed for queries in information

retrieval, see (Cucerzan and Brill, 2004). Most spelling mistakes are random insertions,

deletions, changes, or transpositions of characters anywhere in a word due to mistyping. In

addition, the random nature of spelling errors affects all words equally, and consequently it

affects high-frequent words more often than low-frequent ones, but high-frequent words are

more likely to be available in translation dictionaries. Due to this differing nature of spelling

errors and CLSVs, we believe that it might be better to separate the two processes: The

CLIR query is first spelling corrected based on monolingual resources, and then the query is

translated filling in transliterations of new names and technical terms.

5 These are the medical terms. The popular terms for the English adult, i.e., grown-up, would be volwassene
in Dutch and voksen in Danish, see (Stichele, 1995).
6 Finnish may have been influenced by other European languages due to its location in Scandinavia and a
comparison with, e.g., Vietnamese in its Latin script could be interesting.
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For languages with other than the Latin script, our grapheme-based model may in fact

work as well as a similar model using a phoneme-based approach. Comparisons between a

phoneme and grapheme-based approach in other models for transliterating English names

and terminology to and from Arabic Al-Onaizan and Knight (2002), Japanese (Ohtake et al.,

2004; Bilac and Tanaka, 2004), and Chinese (Zhang et al., 2004) support this claim. An-

other approach suitable for languages of different scripts is to extract explicit translations or

transliterations mentioned in related corpora, e.g., (Zhang and Vines, 2004).

Another topic for further research is the impact of more advanced back-off and smoothing

techniques than the ones we used. Our motivation for the way we applied Laplacian smoothing

was mainly that it gave a uniform prior to the unseen events, which was the prior we used

for successfully creating the training material by simple edit distance alignment. For less

compatible writing systems, additional assumptions for creating the training material may

be needed, and incorporating such assumptions in the back-off and smoothing techniques is

probably beneficial.

6. Conclusion

We presented the problem of finding cross-lingual spelling variants in a probabilistic frame-

work and formulated this as an instance of the general edit distance. The costs for the general

edit distance were learned from a training sample of term pairs. We demonstrated that the

general edit distance can be efficiently implemented with weighted finite-state transducers

using context-sensitive transliterations. On the average, the top two candidates contained the

intended target word more than 7 times out of 10, and approximately 2 times out of 3 the first

transliteration was the one we were looking for. Our experiments also demonstrated that a

distance measure, which explicitly accounts for the order of the n-grams, very significantly

outperforms models based on unordered bags of n-grams. The improvement over the simple

edit distance and skipgram baselines is statistically very highly significant with more than

99.99% confidence. In addition, the experiments demonstrated that our model needed little

or no adaptation data for covering new languages in the same script and that adding a new

language did not significantly affect the performance of the model for the already trained

languages, i.e., the model was robust under training.

In the first experiment, we trained and tested with terminology from the medical domain.

Against an index of a large English newspaper database, we achieved 80–91% precision

at the point of 100% recall for a set of medical terms in Danish, Dutch, French, German,

Italian, Portuguese, and Spanish. This was a relative improvement of the average precision

with 26% on the simple edit distance baseline. In the second experiment, we used the medical

terminology as training data and tested with data consisting of terms from varied domains. We

achieved 64–78% precision at the point of 100% recall in French, German, Italian, Spanish,

Swedish, and Finnish. This is a relative improvement of 22% on the simple edit distance

baseline of the test data. For Swedish, we used no training data, and for Finnish, we needed

only a small amount of training data for adapting the model.
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